上海卡贝信息技术有限公司
   

纵向数据/面板数据

Fixed- and random-effects models

  • Linear model with panel-level effects and i.i.d. errors
  • Linear model with panel-level effects and AR(1) errors
  • GLS and ML estimators
  • Robust and cluster-robust standard errors

Specification tests

  • Hausman specification test
  • Breusch and Pagan Lagrange multiplier test for random effects

Linear dynamic panel-data estimators

  • Arellano–Bond estimator
  • Arellano–Bover/Blundell–Bond system
  • Opening, closing, and embedded gaps
  • Serially correlated disturbances
  • Complete control over instrument list
  • Predetermined variables
  • Tests for autocorrelation and of overidentifying restrictions

Panel-corrected standard errors (PCSE) for linear cross-sectional models

Two-stage least-squares panel-data estimators

  • Between-2SLS estimator
  • Within-2SLS estimator
  • Balestra–Varadharajan–Krishnakumar G2SLS estimator
  • Baltagi EC2SLS estimator
  • All with balanced or exogenously balanced panels

Multilevel mixed-effects models

Stochastic frontier models

  • Time-invariant model
  • Time-varying decay model
  • Battese–Coelli parameterization of time effects
  • Estimates of technical efficiency and inefficiency

Regressors correlated with individual-level effects

  • Hausman–Taylor instrumental-variables estimators
  • Amemiya–MaCurdy instrumental-variables estimators

Panel-data unit-root tests

  • Im–Pesaran–Shin
  • Levin–Lin–Chu
  • Hadri
  • Breitung
  • Fisher-type (combining p-values)
  • Harris–Tzavalis

Summary statistics and tabulations

  • Statistics within and between panels
  • Pattern of panel participation

Random-effects regression for binary and count-dependent variables

  • Interval regression
  • Tobit
  • Probit
  • Logistic regression
  • Complementary log-log regression
  • Poisson regression (Gaussian random-effects)
  • Poisson regression (gamma random-effects)
  • Negative binomial regression
  • Linear parameter constraints

Conditional fixed-effects regression for binary and count-dependent variables

  • Logit regression
  • Poisson regression
  • Negative binomial regression

Swamy’s random-coefficients regression

Panel-data line plots

  • Graphs by panel
  • Overlaid panels

GEE estimation of generalized linear models (GLMs)

  • 6 distribution families
  • 9 links
  • 7 correlation structures
  • Specific models include:
    • probit model with panel-correlation structure
    • Poisson model with panel-correlation structure

Population-averaged regression

  • Complementary log-log regression
  • Logit regression
  • Negative binomial regression
  • Poisson regression
  • Probit regression
  • Linear models regression

Factor variables

  • Automatically create indicators based on categorical variables
  • Form interactions among discrete and continuous variables
  • Include polynomial terms
  • Perform contrasts of categories/levels

Marginal analysis

  • Estimated marginal means
  • Marginal and partial effects
  • Average marginal and partial effects
  • Least-squares means
  • Predictive margins
  • Adjusted predictions, means, and effects
  • Contrasts of margins
  • Pairwise comparisons of margins
  • Profile plots
  • Graphs of margins and marginal effects

Contrasts

  • Analysis of main effects, simple effects, interaction effects, partial interaction effects, and nested effects
  • Comparisons against reference groups, of adjacent levels, or against the grand mean
    Orthogonal polynomials
  • Helmert contrasts
  • Custom contrasts
  • ANOVA-style tests
  • Contrasts of nonlinear responses
  • Multiple-comparison adjustments
  • Balanced and unbalanced data
  • Contrasts in odds-ratio metric
  • Contrasts of means, intercepts, and slopes
  • Graphs of contrasts
  • Interaction plots

Pairwise comparisons

  • Compare estimated means, intercepts, and slopes
  • Compare marginal means, intercepts, and slopes
  • Balanced and unbalanced data
  • Nonlinear responses
  • Multiple-comparison adjustments: Bonferroni, ?idák, Scheffé, Tukey HSD, Duncan, and Student-Newman-Keuls adjustments
  • Group comparisons that are significant
  • Graphs of pairwise comparisons

 

 

Stata 13-数据分析和统计软件

CALL or EMAIL

有关Stata软件的更多信息,请联系销售代表:

400-621-1085
021-50391085

或点击下方按钮,在线提交购买咨询信息

留言询价

 

快速链接
综述
功能概述
最新更新:17版
版本选择

   

 

 

 

 

 

 

 

站点地图|隐私政策|加入我们
Copyright ©2022  上海卡贝信息技术有限公司   All rights reserved.